-
Center
$(-g, -f)$.
-
Radius
The constant distance. $r=\sqrt{g^{2}+f^{2}-c}>0$ (Real circle). $r=\sqrt{g^{2}+f^{2}-c}=0$ (Point circle). If $g^{2}+f^{2}-c<0$ (Imaginary circle).
-
Standard Form of Equations of Circle
Centre (h,k), radius = r: $(x-h)^{2}+(y-k)^{2}=\dot{r}^{2}$.
Centre (0,0), radius = r: $x^{2}+y^{2}=r^{2}$.
Centre (0,0), radius = 1 (Unit circle): $x^{2}+y^{2}=1$.
Centre (0,0), radius = 0 (Point circle): $x^{2}+y^{2}=0$.
If end points of the diameter are $A(x_{1},y_{1})\&B(x_{2},y_{2})$: $(x-x_{1})(x-x_{2})+(y-y_{1})(y-y_{2})=0$. -
Parametric Form of Equations of Circle
Standard form $(x-h)^{2}+(y-k)^{2}=r^{2}$: $x=h+r~cos~\theta,y=k+r~sin~\theta$.
$x^{2}+y^{2}=r^{2}$: $x=r~cos~\theta,y=r~sin~\theta$. -
General Form of a Circle
$x^{2}+y^{2}+2gx+2fy+c=0$.
- Constants: g, f, c.
- Coefficients of $x^{2}$ and $y^{2}$ are 1.
- Does not contain the term involving the product xy.
-
Tangents and Normals
Tangent: A straight line that touches the curve at a point without cutting the curve.
Normal: A straight line perpendicular to the curve at the point of tangency.- Equation of tangent to $x^{2}+y^{2}=a^{2}$ at $P(x_{1},y_{1})$: $xx_{1}+yy_{1}=a^{2}$.
- Equation of normal to $x^{2}+y^{2}=a^{2}$ at $P(x_{1},y_{1})$: $xy_{1}-yx_{1}=0$.
- Equation of tangent to $x^{2}+y^{2}+2gx+2fy+c=0$ at $P(x_{1},y_{1})$: $xx_{1}+yy_{1}+g(x+x_{1})+f(y+y_{1})+c=0$.
- Equation of normal to $x^{2}+y^{2}+2gx+2fy+c=0$ at $P(x_{1},y_{1})$: $(x-x_{1})(y_{1}+f)-(y-y_{1})(x_{1}+g)=0$.
-
Condition of Tangency
The line $y=mx+c$ touches the circle $x^{2}+y^{2}=a^{2}$ if $c=\pm a\sqrt{1+m^{2}}$.
- Intersects in two distinct points if $a^{2}(1+m^{2})-c^{2}>0$.
- Intersects in real and coincident points if $a^{2}(1+m^{2})-c^{2}=0$.
- Intersects in imaginary points if $a^{2}(:+m^{2})-c^{2}<0$.< /li>
-
Equation of a Circle in Some Special Cases
- \(|k| = r\)
- Only one solution for \(x\) when \(y = 0\)
- If the circle touches x-axis then its equation is:
- Center (h,k): $(x-h)^{2}+(y-k)^{2}=k^{2} \Rightarrow x^{2}+y^{2}-2hx-2ky+h^{2}=0$.
- Center (-h,k): $(x+h)^{2}+(y-k)^{2}=k^{2} \Rightarrow x^{2}+y^{2}+2hx-2ky+h^{2}=0$.
- Center (-h,-k): $(x+h)^{2}+(y+k)^{2}=k^{2} \Rightarrow x^{2}+y^{2}+2hx+2ky+h^{2}=0$.
- Center (h,-k): $(x-h)^{2}+(y+k)^{2}=k^{2} \Rightarrow x^{2}+y^{2}-2hx+2ky+h^{2}=0$.
- \(|h| = r\)
- Only one solution for \(y\) when \(x = 0\)
- Equation of a circle touches y-axis then its equation is:
- Center (h,k): $(x-h)^{2}+(y-k)^{2}=h^{2} \Rightarrow x^{2}+y^{2}-2hx-2ky+k^{2}=0$.
- Center (-h,k): $(x+h)^{2}+(y-k)^{2}=h^{2} \Rightarrow x^{2}+y^{2}+2hx-2ky+k^{2}=0$.
- Center (-h,-k): $(x+h)^{2}+(y+k)^{2}=h^{2} \Rightarrow x^{2}+y^{2}+2hx+2ky+k^{2}=0$.
- Center (h,-k): $(x-h)^{2}+(y+k)^{2}=h^{2} \Rightarrow x^{2}+y^{2}-2hx+2ky+k^{2}=0$.
- \(|h| = |k| = r\)
- Equation of circle which touches both the axes is:
- Center (r,r): $(x-r)^{2}+(y-r)^{2}=r^{2} \Rightarrow x^{2}+y^{2}-2rx-2ry+r^{2}=0$.
- Center (-r,r): $(x+r)^{2}+(y-r)^{2}=r^{2} \Rightarrow x^{2}+y^{2}+2rx-2ry+r^{2}=0$.
- Center (-r,-r): $(x+r)^{2}+(y+r)^{2}=r^{2} \Rightarrow x^{2}+y^{2}+2rx+2ry+r^{2}=0$.
- Center (r,-r): $(x-r)^{2}+(y+r)^{2}=r^{2} \Rightarrow x^{2}+y^{2}-2rx+2ry+r^{2}=0$.
-
Important Properties of a Circle
- Perpendicular dropped from the center of a circle on a chord bisects the chord.
- The perpendicular bisector of any chord of a circle passes through the center of the circle.
- The line joining the center of a circle to the midpoint of a chord is perpendicular to the chord.
- Congruent chords of a circle are equidistant from its centre.
- Measure of the central angle of a minor arc is double the measure of the angle subtended in the corresponding major arc.
- An angle in a semi-circle is a right angle.
- The tangent to a circle at any point of the circle is perpendicular to the radial segment at that point.
- The perpendicular at the outer end of a radial segment is tangent to the circle.
- Normal lines of a circle pass through the centre of the circle.
- Mid point of the hypotenuse of a right triangle is the circumcentre of the triangle.
- Perpendicular dropped from a point of a circle on a diameter is a mean proportional between the segments into which it divides the diameter.
-
Contact of Two Circles
Let $r_{1}$ and $r_{2}$ be the radii of two circles and $C_{1}$, $C_{2}$ be their centers.
Condition Relationship Circles Touch Externally $|C_{1}C_{2}|=r_{1}+r_{2}$ Circles Touch Internally $|C_{1}C_{2}|=|r_{1}-r_{2}|$ Circles Intersect in Two Real Distinct Points $|r_{1}-r_{2}|<|C_{1}C_{2}|<r_{1}+r_{2}$ Circles do not Touch (i) $|C_{1}C_{2}|>r_{1}+r_{2}$
(ii) $|C_{1}C_{2}|<|r_{1}-r_{2}|$