The Distance Formula
\( d = |AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \)
The distance between points \(A(x_1, y_1)\) and \(B(x_2, y_2)\). (Page: 95)
Distance of a Point from Origin
\( |OA| = \sqrt{x_1^2 + y_1^2} \)
The distance of point \(A(x_1, y_1)\) from the origin \(O(0,0)\). (Page: 95)
The Ratio Formula (Internal Division)
\( \left(\frac{k_1x_2 + k_2x_1}{k_1 + k_2}, \frac{k_1y_2 + k_2y_1}{k_1 + k_2}\right) \)
Coordinates of a point dividing the line segment AB in the ratio \(k_1:k_2\) internally. (Page: 95)
The Ratio Formula (External Division)
\( \left(\frac{k_1x_2 - k_2x_1}{k_1 - k_2}, \frac{k_1y_2 - k_2y_1}{k_1 - k_2}\right) \)
Coordinates of a point dividing the line segment AB in the ratio \(k_1:k_2\) externally. (Page: 95)
The Midpoint Formula
\( \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right) \)
A special case of the ratio formula where \(k_1:k_2 = 1:1\). (Page: 95)
Centroid of a Triangle
\( \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right) \)
The point of intersection of medians of a triangle with vertices \(A(x_1,y_1)\), \(B(x_2,y_2)\), and \(C(x_3,y_3)\). (Page: 95)
In-centre of a Triangle
\( \left(\frac{ax_1 + bx_2 + cx_3}{a+b+c}, \frac{ay_1 + by_2 + cy_3}{a+b+c}\right) \)
The point of intersection of angle bisectors. a, b, c are side lengths opposite to vertices A, B, C. (Page: 95)
Area of a Triangular Region
\( \Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \)
Area of a triangle with vertices \(A(x_1,y_1)\), \(B(x_2,y_2)\), and \(C(x_3,y_3)\). (Page: 99)