LYMAN SERIES |
$\frac{1}{\lambda} = R \left(\frac{1}{1^2} - \frac{1}{n^2}\right)$, $n=2,3,4,...,\infty$ |
U-V |
$n=2 \implies \lambda = \frac{4}{3R} = 1216~\text{Å}$ |
$n=\infty \implies \lambda = \frac{1}{R} = 912~\text{Å}$ |
BALMER SERIES |
$\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{n^2}\right)$, $n=3,4,5,...,\infty$ |
Visible |
$n=3 \implies \lambda = \frac{36}{5R} = 6563~\text{Å}$ |
$n=\infty \implies \lambda = \frac{4}{R} = 3648~\text{Å}$ |
PASCHEN SERIES |
$\frac{1}{\lambda} = R \left(\frac{1}{3^2} - \frac{1}{n^2}\right)$, $n=4,5,6,...,\infty$ |
Infrared |
$n=4 \implies \lambda = \frac{144}{7R} = 18761.1~\text{Å}$ |
$n=\infty \implies \lambda = \frac{9}{R} = 8208~\text{Å}$ |
BRACKET SERIES |
$\frac{1}{\lambda} = R \left(\frac{1}{4^2} - \frac{1}{n^2}\right)$, $n=5,6,7,...,\infty$ |
Infrared |
$n=5 \implies \lambda = \frac{400}{9R} = 40533.3~\text{Å}$ |
$n=\infty \implies \lambda = \frac{16}{R} = 14592~\text{Å}$ |
PFUND SERIES |
$\frac{1}{\lambda} = R \left(\frac{1}{5^2} - \frac{1}{n^2}\right)$, $n=6,7,8,...,\infty$ |
Infrared |
$n=6 \implies \lambda = \frac{900}{11R} = 74618.18~\text{Å}$ |
$n=\infty \implies \lambda = \frac{25}{R} = 22800~\text{Å}$ |