Physics Formula Sheet
-
Chapter 1: Measurements
Show/Hide Details
-
Uncertainties
Show/Hide Formulas
- Absolute Uncertainty: $\delta X$
- Fractional Uncertainty: $\frac{\delta X}{X}$
- Percentage Uncertainty: $\frac{\delta X}{X} \times 100\%$
- Percentage uncertainty = $\frac{L.C}{\text{measured value}} \times 100$
- Uncertainty in timing experiment = $\frac{\text{L.C}}{\text{no. of vibration}}$
-
Algebra with Significant Figures
Show/Hide Formulas
- Division and Multiplication Example: $\frac{4.54 \times 2.324}{1.3365} = 7.89447063 = 7.89$ (retained to 3 significant figures)
- Addition and Subtraction Example: $4.345 + 23.51 = 27.855 = 27.86$ (retained to 2 decimal places)
- Addition and Subtraction Example: $101.2401 - 1.0 = 100.2401 = 100.2$ (retained to 1 decimal place)
- Addition and Subtraction Example: $101.2401 - 1 = 100.2401 = 100$ (retained to no decimal place)
-
Dimensional Analysis
Show/Hide Formulas
- Velocity: $[L/T]$
- Acceleration: $[L/T^{2}]$
- Force: $[ML/T^{2}]$
- Work: $[ML^{2}/T^{2}]$
- Energy: $[ML^{2}/T^{2}]$
- Power: $[ML^{2}/T^{3}]$
-
Constants and Conversions
Show/Hide Formulas
- $1 N = 10^5 \text{ dyne}$
- $1 \text{ Joule} = 10^7 \text{ erg}$
- $1 \text{ Watt} = 10^7 \text{ erg/s}$
- $u_{1}=kx^{a}$ (Example of power factor rule)
-
Chapter 2: Vectors and Equilibrium
Show/Hide Details
-
Vector Properties and Operations
Show/Hide Formulas
- If $\vec{a}=(5N)(\text{East})$, $\vec{b}=(5N)(\text{West})$ then $\vec{a}\ne\vec{b}$ but $|\vec{a}|=|\vec{b}|=5N$
- Vector does not change when rotated through an angle $\theta=2n\pi$ where $n=1,2,3,\dots$
- $2\pi=360^{\circ}$
- Unit vector: $\hat{A} = \frac{\vec{A}}{|\vec{A}|}$
- Position vector in two dimensions: $\vec{r} = a\hat{i} + b\hat{j}$
- Position vector in three dimensions: $\vec{r} = a\hat{i} + b\hat{j} + c\hat{k}$
- Multiplication of a Vector with a Scalar: New vector $= n\vec{A}$
- Magnitude of new vector: $n|\vec{A}|$
-
Rectangular Components of a Vector
Show/Hide Formulas
- X-component: $A_x = A\cos\theta$
- Y-component: $A_y = A\sin\theta$
- Magnitude from components: $|\vec{A}|^2 = A_x^2 + A_y^2$
- Trigonometric Identity: $(\cos^2\theta+\sin^2\theta=1)$
- Direction from components: $\theta = \tan^{-1}\left(\frac{A_y}{A_x}\right)$
- When vector A makes angle $\theta$ with y-axis: $A_y = A\sin\theta$
- When vector A makes angle $\theta$ with y-axis: $A_x = A\cos\theta$
- When vector A makes angle $\theta$ with y-axis: $\theta = \tan^{-1}\left(\frac{A_x}{A_y}\right)$
-
Addition of Vectors by Rectangular Components
Show/Hide Formulas
- Resultant magnitude: $R = \sqrt{(R_x)^2 + (R_y)^2}$
- X-component of resultant: $R_x = A_x + B_x$
- Y-component of resultant: $R_y = A_y + B_y$
- Direction of resultant: $\theta = \tan^{-1}\left(\frac{R_y}{R_x}\right)$
- For multiple vectors (magnitude): $R = \sqrt{(A_x+B_x+\dots)^2 + (A_y+B_y+\dots)^2}$
- For multiple vectors (direction): $\theta = \tan^{-1}\left(\frac{A_y+B_y+\dots}{A_x+B_x+\dots}\right)$
-
Parallelogram Law
Show/Hide Formulas
- Final resultant magnitude: $c^2=a^2+b^2+2ab\cos\theta$
- Final resultant magnitude (vector notation): $|\vec{c}|=\sqrt{a^2+b^2+2ab\cos\theta}$
- Maximum resultant: $c_{max} = \sqrt{(a+b)^2} = |a+b|$
- Minimum resultant: $c_{min} = \sqrt{(a-b)^2} = |a-b|$
- For subtraction: $|\vec{c}|=\sqrt{a^2+b^2-2ab\cos\theta}$
-
Scalar or Dot Products
Show/Hide Formulas
- Definition: $\vec{A} \cdot \vec{B} = AB\cos\theta$
- Commutative Law: $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$
- Associative Law: $\vec{A} \cdot (\vec{B} \cdot \vec{C}) = (\vec{A} \cdot \vec{B}) \cdot \vec{C}$
- Distributive Law: $\vec{A} \cdot (\vec{B}+\vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$
- Perpendicular vectors: If $\theta = 90^\circ$, then $\vec{A} \cdot \vec{B} = 0$
- Parallel vectors: If $\theta = 0^\circ$, then $\vec{A} \cdot \vec{B} = AB$
- Anti-parallel vectors: If $\theta = 180^\circ$, then $\vec{A} \cdot \vec{B} = -AB$
- Unit vector dot products (perpendicular): $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k} \cdot \hat{i} = 0$
- Unit vector dot products (parallel): $\hat{i} \cdot \hat{i} = \hat{j} \cdot \hat{j} = \hat{k} \cdot \hat{k} = 1$
- Angle between two vectors: $\theta = \cos^{-1}\left(\frac{A_x B_x + A_y B_y + A_z B_z}{AB}\right)$
- Self scalar product: $\vec{A} \cdot \vec{A} = A^2$
-
Vector or Cross Product
Show/Hide Formulas
- Definition: $\vec{A} \times \vec{B} = AB\sin\theta\hat{n}$
- Non-commutative: $\vec{A} \times \vec{B} \ne \vec{B} \times \vec{A}$
- Parallel/Anti-parallel vectors: $\vec{A} \times \vec{A} = 0$
- Unit vector cross products (cyclic): $\hat{i} \times \hat{j} = \hat{k}$, $\hat{j} \times \hat{k} = \hat{i}$, $\hat{k} \times \hat{i} = \hat{j}$
- Scalar multiplication: $(\vec{m} \vec{A}) \times \vec{B} = \vec{A} \times (m\vec{B})$
- Parallel/Anti-parallel vectors (zero product): $\vec{A} \times \vec{B} = \vec{0}$
- Component form: $\vec{A} \times \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k}) \times (B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$
- Determinant form: $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$
- Scalar triple product (expanded): $\vec{A} \cdot (\vec{B} \times \vec{C}) = A_x(B_y C_z - B_z C_y) - A_y(B_x C_z - B_z C_x) + A_z(B_x C_y - B_y C_x)$
- Scalar triple product (determinant): $\vec{A} \cdot (\vec{B} \times \vec{C}) = \begin{vmatrix} A_x & A_y & A_z \\ B_x & B_y & B_z \\ C_x & C_y & C_z \end{vmatrix}$
-
Torque
Show/Hide Formulas
- Vector definition: $\vec{\tau} = \vec{r} \times \vec{F}$
- Magnitude: $\tau = rF\sin\theta$
- Magnitude (perpendicular): $\tau = rF$ (if $\theta = 90^\circ$)
- Torque of a couple: $\tau = Fd$
-
Conditions of Equilibrium
Show/Hide Formulas
- First Condition (Translational): $\sum \vec{F} = 0$
- For coplanar forces: $\sum F_x = 0$ and $\sum F_y = 0$
- Example X-component sum: $\sum F_x = 5N + 3N - 4N - 7N - 5N = \text{zero}$
- Example Y-component sum: $\sum F_y = 10N - 5N - 5N = \text{zero}$
- Second Condition (Rotational): $\sum \vec{\tau} = 0$
- Example Clockwise torque: $-10N \times 2m = -20~N~m$
- Example Anticlockwise torque: $10N \times 2m = 20N~m$
- Example Sum of torques: $\sum \tau = 20~N~m - (20~N~m) = \text{zero}$
-
Chapter 3: Motion and Force
Show/Hide Details
-
Acceleration
Show/Hide Formulas
- Rate of change of velocity: $\vec{a} = \frac{\Delta \vec{v}}{\Delta t}$
- Slope of velocity-time graph: $\vec{a} = \tan\theta$
-
Average Speed/Acceleration
Show/Hide Formulas
- Average speed (equal distance): $v_{av} = \frac{2v_1v_2}{v_1+v_2}$
- Average speed (equal time): average speed = $\frac{v_1+v_2}{2}$
- Average acceleration (two intervals): $a = \frac{a_1+a_2}{t_1+t_2}$
-
Equations of Motion (Galileo)
Show/Hide Formulas
- First Equation: $v_f = v_i + at$ or $v_f = v_i + gt$
- Second Equation: $s = v_i t + \frac{1}{2}at^2$ or $s = v_i t + \frac{1}{2}gt^2$
- Third Equation: $v_f^2 = v_i^2 + 2as$ or $v_f^2 = v_i^2 + 2gs$
- Distance in nth second: $s_n = v_i + \frac{1}{2}a(2n-1)$
-
Newton's Laws of Motion
Show/Hide Formulas
- Second Law (Proportionality): $F \propto \text{Mass}$ x $\text{Change in velocity per second}$
- Second Law (Standard Form): $F = ma$
- Third Law: $\vec{F}_{action} = -\vec{F}_{reaction}$
-
Momentum and Impulse
Show/Hide Formulas
- Linear Momentum: $\vec{p} = m\vec{v}$
- Zero Momentum: if $\vec{v} = 0$ then $\vec{p} = \vec{0}$
- Impulse Definition: $\vec{I} = \Delta \vec{p}$
- Impulse Definition: $\vec{I} = \vec{F}\Delta t$
- Law of Conservation of Linear Momentum: $m_1v_1+m_2v_2 = m_1v_1'+m_2v_2'$
-
Collisions (Elastic in One Dimension)
Show/Hide Formulas
- Relative velocities: $v_1+v_1' = v_2+v_2'$
- Relative velocities: $v_1-v_2 = -(v_1'-v_2')$
- Final velocity of $m_1$: $v_1' = \frac{(m_1-m_2)V_1}{(m_1+m_2)} + \frac{2m_2V_2}{(m_1+m_2)}$
- Final velocity of $m_2$: $v_2' = \frac{2m_1V_1}{(m_1+m_2)} + \frac{(m_2-m_1)V_2}{(m_1+m_2)}$
-
Force Due to Water Flow
Show/Hide Formulas
- Force: $\vec{F} = \frac{m}{t}\vec{v}$
-
Momentum and Explosive Forces
Show/Hide Formulas
- Recoil velocity: $v' = \frac{-m}{M}v$
-
Propulsion of Rocket
Show/Hide Formulas
- Instantaneous acceleration: $a = mv/M$
-
Friction
Show/Hide Formulas
- Coefficient of friction: $\mu = \frac{\text{Limiting friction }(f)}{\text{Normal reaction }(R)}$
- Coefficient of friction: $\mu = \frac{f}{R}$
- Limiting friction: $f = \mu R$
- Force for horizontal surface: $F = mg$
- Static friction force: $f_s = \mu_s R$
- Kinetic friction force: $f_k = \mu_k R$
- Angle of friction: $\tan\theta = \frac{f}{R} = \mu$
- Angle of static friction: $\tan\theta_s = \frac{f_s}{R} = \mu_s$
- Angle of kinetic friction: $\tan\theta_k = \frac{f_k}{R} = \mu_k$
-
Masses in Contact
Show/Hide Formulas
- Newton's second law for $m_1$: $F_1 - F_r = m_1 a$
- Newton's second law for $m_2$: $F_r = m_2 a$
- Force of reaction: $F_r = \frac{m_2 F}{m_1+m_2}$
- Acceleration: $a = \frac{F}{m_1+m_2}$
-
Masses Connected by Strings
Show/Hide Formulas
- Tension (1 string 2 masses): $T = \frac{m_2 F}{m_1+m_2}$
- Acceleration (1 string 2 masses): $a = \frac{F}{m_1+m_2}$
- Acceleration (2 string 3 masses): $a = \frac{F}{m_1+m_2+m_3}$
- Tension string1 (2 string 3 masses): $T_1 = \frac{(m_1+m_2)F}{m_1+m_2+m_3}$
- Tension string2 (2 string 3 masses): $T_2 = \frac{(m_2+m_3)F}{m_1+m_2+m_3}$
-
Tension and Acceleration in a String (Pulley)
Show/Hide Formulas
- Acceleration: $a = \frac{m_1 - m_2}{m_1 + m_2}g$
- Tension: $T = \frac{2m_1m_2}{m_1+m_2}g$
-
Atwood Machine
Show/Hide Formulas
- Acceleration due to gravity: $g = \frac{m_1+m_2}{m_1-m_2}a$
- Acceleration (one body vertical): $a = \frac{m_1 g}{m_1+m_2}$
- Tension (one body vertical): $T = \frac{m_1 m_2 g}{m_1+m_2}$
-
Mechanical Advantage
Show/Hide Formulas
- Definition: MECHANICAL ADVANTAGE = $\frac{\text{LOAD}}{\text{EFFORT}}$
- Load: LOAD = MECHANICAL ADVANTAGE $\times$ EFFORT
- Effort: EFFORT = $\frac{\text{LOAD}}{\text{MECHANICAL ADVANTAGE}}$
-
Projectile Motion
Show/Hide Formulas
- Horizontal coordinate: $x = v_o \cos\theta_o t$
- Vertical coordinate: $y = v_o \sin\theta_o t - \frac{1}{2}gt^2$
- Time to max height: $t = \frac{v_y \sin\theta_o}{g}$
- Total time of flight: $T = \frac{2v_y \sin\theta_o}{g}$
- Maximum height: $H = \frac{v_y^2 \sin^2\theta_o}{2g}$
- Range (horizontal): $R = \frac{v_o^2 \sin(2\theta_o)}{g}$
- Maximum horizontal range ($\theta = 45^\circ$): $R_{max} = \frac{v_o^2}{g}$
- Relation between Range and Height: $R\tan\theta = 4H$
-
Chapter 4: Work and Energy
Show/Hide Details
-
Work
Show/Hide Formulas
- Dot product definition: $W = \vec{F} \cdot \vec{d}$
- Scalar definition: $W = Fd \cos\theta$
- Work along closed path (conservative field): $W_{total} = 0$
- Work along closed path (non-conservative field): $W_{(AB)} \ne (W_{(AB)})_r$
- Spring force: $F = kx$
- Work done by variable force (integral): Total Area = $\lim_{\Delta d \to 0} \sum F \cos\theta \Delta d = \text{work done}$
-
Power
Show/Hide Formulas
- Definition: $P = \text{work/time}$
- Linear motion: $P = \frac{W}{t}$
- Linear motion (vector): $P = \vec{F} \cdot \vec{v}$
- Angular motion: $P = \tau \cdot \omega$
- Average power: $P = \frac{W}{t}$
- Instantaneous power: $P_{inst} = \frac{\Delta W}{\Delta t}$
- Unit conversion: $1~W = 1~J/s$
- Unit conversion: $1~h.p = 746~watt$
- Unit conversion: $1~h.p = 550~\text{foot pound/sec}$
- Unit conversion: $1~kW~h = 3.6 \times 10^6~J$
-
Energy
Show/Hide Formulas
- Kinetic Energy: $K.E = \frac{1}{2}mv^2$
- Kinetic Energy (momentum): $K.E = \frac{p^2}{2m}$
- Gravitational Potential Energy: $P.E = mgh$
- Elastic Potential Energy: $P.E = \frac{1}{2}kx^2$
- Electric Potential Energy: $P.E = q\Delta V$
- Work-Energy Principle: Work = $(K.E)_f - (K.E)_i$
- Absolute Gravitational P.E: $U_m = -\frac{GMm}{R}$
- Escape Velocity: $V_{esc} = \sqrt{\frac{2GM}{R}}$
- Escape Velocity (g): $V_{esc} = \sqrt{2gR_e}$
- Escape Velocity (numerical values): $1.2 \times 10^4~m~s^{-1} = 6.96~\text{miles}~s^{-1} = 11.2~\text{kms}^{-1} = 25000~\text{miles}~h^{-1} = 40320~\text{kmh}^{-1}$
- Interconversion of K.E and P.E: $mgh + \frac{1}{2}mv^2 = \frac{1}{2}mv^2$
- Velocity from P.E conversion: $v = \sqrt{2gh}$
- Einstein's Mass Energy: $E = mc^2$
-
Chapter 5: Rotational and Circular Motion
Show/Hide Details
-
Chapter 6: Fluid Dynamics
Show/Hide Details
-
Density and Pressure
Show/Hide Formulas
- Density: $\rho = \frac{\text{Mass}(m)}{\text{Volume}(V)}$
- Pressure (definition): $P = \frac{\text{Force}(F)}{\text{Area}(A)}$
- Pressure (fluid depth): $P = \rho gh$
- Pascal's Law: $\frac{F_1}{A_1} = \frac{F_2}{A_2}$
- Unit conversion: $1~\text{atm} = 1.013 \times 10^5~\text{Pa}$
- Unit conversion: $1~\text{bar} = 10^5~\text{Pa}$
- Unit conversion: $1~\text{torr} = 133.3~N~m^{-2}$
- Unit conversion: $1~\text{torr} = 1~\text{mm of Hg}$
- Thrust: Thrust = Pressure $\times$ Area
-
Buoyancy and Floatation
Show/Hide Formulas
- Buoyant Force (Archimedes' Principle): $B = V\rho g$
-
Viscous Drag and Stokes' Law
Show/Hide Formulas
- Stokes' Law: $F_D = 6\pi\eta r v$
-
Terminal Velocity
Show/Hide Formulas
- Terminal velocity (general): $v_t = \sqrt{\frac{2\rho g}{6\pi r\eta}}$
- Terminal velocity (simplified): $v_t = \left(\frac{2\rho g}{9\eta}\right)r^2$
-
Fluid Flow and Equation of Continuity
Show/Hide Formulas
- Mass flow rate: $P_1A_1V_1 = P_2A_2V_2$
- Mass flow rate (simplified): $P~av = \text{mass/time}$
- Volume flow rate: $A_1V_1 = A_2V_2$
- Volume flow rate (simplified): $AV = \text{volume/time}$
-
Bernoulli's Equation and Applications
Show/Hide Formulas
- Bernoulli's Equation: $P + \frac{1}{2}\rho v^2 + \rho gh = \text{constant}$
- Potential energy per unit volume: $\rho gh$
- Kinetic energy per unit volume: $\frac{1}{2}\rho v^2$
- Kinetic energy: $\frac{1}{2}mv^2$
- Pressure energy: $PV$
- Pressure energy per unit volume: $P$
- Torricelli's Theorem (Efflux Velocity): $v = \sqrt{2g(h_1-h_2)}$
- Venturimeter relation: $P_1 - P_2 = \frac{1}{2}\rho v^2$
-
Chapter 7: Oscillations
Show/Hide Details
-
Simple Harmonic Motion (SHM)
Show/Hide Formulas
- Angular frequency: $\omega=2\pi/T\rightarrow\omega=2\pi f$
- Displacement (from positive extreme): $x=x_{0}sin(\omega t+90^{\circ})=x_{0}cos~\omega t$
- Displacement: $x=x_{o}sin~\omega t$
- Acceleration: $a=-\omega^{2}x$
- Time period of projection: $T=\frac{2\pi}{\omega}$
- Speed of projection: $v=\omega\sqrt{r^{2}-x^{2}}$ where $r=$ radius of the circle = amplitude of S.H.M
-
Mass-Spring System
Show/Hide Formulas
- Hooke's Law: $F=k~x$
- Spring constant: $k=\frac{F}{x}$
- Angular frequency (spring-mass): $\omega=\sqrt{\frac{k}{m}}$
- Acceleration of mass-spring system: $\overline{a}=-\frac{k}{m}\vec{x}$
- Time period (mass-spring): $T=2\pi\sqrt{\frac{m}{k}}$
- Displacement (mass-spring waveform): $x=x_{o}sin[\frac{2\pi}{T}]t$
- Springs in series: $\frac{1}{k}=\frac{1}{k_{1}}+\frac{1}{k_{2}}+ ...$
- Springs in parallel: $k=k_{1}+k_{2}+ ...$
- Velocity proportionality (mass-spring): $ v_{ins} \propto \sqrt{1-\frac{x^{2}}{x_{o}^{2}}}$
- Instantaneous velocity (mass-spring): $v_{ins}=v_{max}\sqrt{1-\frac{x^{2}}{x_{o}^{2}}}.$
- Maximum speed (mass-spring): $v_{max}=x_{o}\sqrt{\frac{k}{m}} = v_{o}$
- Vertical spring force: $F=mg=kx$
- Mass-spring ratio (vertical): $\frac{m}{k}=\frac{x}{g}$
- Time period (vertical spring): $T=2\pi\sqrt{\frac{x}{g}}$
-
Simple Pendulum
Show/Hide Formulas
- Restoring force (simple pendulum): $F_{r}=-mg~sin\theta,$
- Restoring force (small amplitude): $F_{r}=-mg\theta$
- Angular frequency (simple pendulum): $\omega=\sqrt{\frac{g}{l}}$
- Acceleration (simple pendulum, small amplitude): $a=-(\frac{g}{l})x$
- Time period (simple pendulum): $T=2\pi\sqrt{\frac{l}{g}}$
- Frequency (simple pendulum): $f=\frac{1}{2\pi}\sqrt{\frac{g}{l}}$
- Acceleration (non-SHM pendulum): $a=-g~sin~\theta$
- Time period (pendulum in ascending lift): $T=2\pi\sqrt{\frac{l}{g+a}}$
- Time period (pendulum in descending lift): $T=2\pi\sqrt{\frac{l}{g-a}}$
-
Energy Conservation in SHM
Show/Hide Formulas
- Instantaneous Kinetic Energy: $K.E_{inst}=\frac{1}{2}k~x_{o}^{2}(1-\frac{\dot{x}^{2}}{x_{o}^{2}})$
- Maximum Kinetic Energy: $(K.E)_{max}=\frac{1}{2}k\dot{x}_{o}^{2}$
- Instantaneous Kinetic Energy (alternative): $K.E_{inst}=(K.E)_{max}(1-\frac{x^{2}}{x_{o}^{2}})$
- Instantaneous Potential Energy: $P.E_{inst.}=\frac{1}{2}kx^{2}$
- Maximum Potential Energy: $(P.E)_{max}=\frac{1}{2}kx_{o}^{2}$
- Total Energy in SHM: $=\frac{1}{2}kx_{o}^{2}$
-
Resonance
Show/Hide Formulas
- Electrical Resonance Frequency: $f=\frac{1}{2\pi\sqrt{LC}}$
-
Chapter 8: Waves
Show/Hide Details
-
Wave Properties
Show/Hide Formulas
- Wave speed: $v = f\lambda$
- Particles in phase (path difference): $n\lambda$
- Particles out of phase (path difference): $(n + 1/2)\lambda$
-
Velocity of Sound in Air
Show/Hide Formulas
- General Mechanical Wave: $v = \sqrt{E/\rho}$
- Newton's Formula (Isothermal): $v = \sqrt{P/\rho}$
- Laplace's Formula (Adiabatic): $v = \sqrt{\gamma P/\rho}$
- Temperature Dependence: $v_t = v_o + 0.61t$
- Ratio of speeds with temperature: $\frac{v_1}{v_2} = \sqrt{\frac{T_1}{T_2}}$
-
Superposition and Interference
Show/Hide Formulas
- Superposition Principle: $Y_{total} = Y_1 + Y_2 + \dots + Y_n$
- Beat frequency: $f_{beat} = |f_A - f_B|$
-
Waves on Stretched Strings
Show/Hide Formulas
- Speed of wave: $v = \sqrt{T/m}$
- Fundamental frequency (fixed both ends): $f_1 = \frac{1}{2l}\sqrt{\frac{T}{m}}$
- Harmonics (fixed both ends): $f_n = n f_1$
-
Standing Waves in Air Columns
Show/Hide Formulas
- Length of open pipe (harmonics): $L = n\frac{\lambda}{2}$
- Length of closed pipe (harmonics): $L = (2n-1)\frac{\lambda}{4}$
- Fundamental frequency (open pipe): $f = v/2L$
- Fundamental frequency (closed pipe): $f = v/4L$
-
Doppler's Effect
Show/Hide Formulas
- Source towards listener: $f' = \left(\frac{v}{v-u_s}\right)f$
- Source away listener: $f' = \left(\frac{v}{v+u_s}\right)f$
- Listener towards source: $f' = \left(\frac{v+u_o}{v}\right)f$
- Listener away source: $f' = \left(\frac{v-u_o}{v}\right)f$
- General (towards each other): $f' = \left(\frac{v+u_o}{v-u_s}\right)f$
- General (away from each other): $f' = \left(\frac{v-u_o}{v+u_s}\right)f$
-
Chapter 9: Physical Optics
Show/Hide Details
-
Interference of Light (Young's Double Slit)
Show/Hide Formulas
- Optical path: $nd$
- Bright fringes (constructive): $d \sin\theta = m\lambda$
- Dark fringes (destructive): $d \sin\theta = (2m+1)\frac{\lambda}{2}$
- Position of $m^{th}$ bright fringe: $y_m = \frac{m\lambda D}{d}$
- Position of $m^{th}$ dark fringe: $y_m = \frac{(2m+1)\lambda D}{2d}$
- Wavelength from bright fringe: $\lambda = \frac{y_m d}{mD}$
- Wavelength from dark fringe: $\lambda = \frac{2y_m d}{(2m+1)D}$
- Fringe width: $F.W = \frac{\lambda D}{d}$
-
Diffraction
Show/Hide Formulas
- Minima for narrow slit: $d \sin\theta = m\lambda$
- Diffraction Grating (maxima): $d \sin\theta = m\lambda$
- Grating element: $d = 1/N$
- Resolving power (grating): $RP = \frac{\lambda}{\Delta\lambda}$
- Resolving power (grating): $RP = N \times m$
- Bragg's Law: $2d \sin\theta = m\lambda$
-
Polarization
Show/Hide Formulas
- Malus' Law (Intensity): $I = I_o \cos^2\theta$
-
Chapter 10: Optical Instruments
Show/Hide Details
-
Lenses and Magnification
Show/Hide Formulas
- Power of a Lens (meters): $P = \frac{1}{f}$
- Power of a Lens (cm): $P = \frac{100}{f}$
- Combination of Lenses (Power): $P = P_1 + P_2 + \dots + P_n$
- Combination of Lenses (Focal Length): $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \dots + \frac{1}{f_n}$
- Lens Formula: $\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$
- Linear magnification: $M = \frac{q}{p}$
- Linear magnification: $M = \frac{h_i}{h_o}$
- Angular magnification: $M_a = \frac{\text{Angle formed at aided eye}}{\text{Angle formed at naked eye}}$
-
Resolving Power
Show/Hide Formulas
- Angle of Resolution: $\alpha_{min} = 1.22 \frac{\lambda}{D}$
- Resolving power (lens): $R = \frac{D}{1.22\lambda}$
-
Microscopes
Show/Hide Formulas
- Simple Microscope Magnifying Power: $M = 1 + \frac{d}{f}$
- Compound Microscope Magnification: $M = \frac{L}{f_o}\left(1+\frac{d}{f_e}\right)$
-
Refraction and Speed of Light
Show/Hide Formulas
- Refractive index of prism: $n = \frac{\sin\left(\frac{A+D_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}$
- Michelson's Speed of Light: $c = 16fd$
- Index of Refraction: $n = \frac{c}{v}$
- Snell's Law: $n_1 \sin\theta_1 = n_2 \sin\theta_2$
-
Chapter 11: Heat & Thermodynamics
Show/Hide Details
-
Temperature and Heat Capacity
Show/Hide Formulas
- Heat exchange: $Q = mc\Delta T$
- Specific Heat: $c = \frac{Q}{m\Delta T}$
-
Temperature Conversions
Show/Hide Formulas
- Celsius to Fahrenheit: $T_F = \frac{9}{5}T_C + 32$
- Fahrenheit to Celsius: $T_C = \frac{5}{9}(T_F - 32)$
- Celsius to Kelvin: $T_K = T_C + 273$
- Kelvin to Celsius: $T_C = T_K - 273$
- Relation between scales: $\frac{T_C - 0}{100} = \frac{T_F - 32}{180} = \frac{T_K - 273}{100}$
-
Kinetic Theory of Gases
Show/Hide Formulas
- RMS speed of gas molecules: $v_{rms} = \sqrt{\frac{3KT}{m}}$
- Pressure from KMT: $P = \frac{2}{3} \frac{N}{V} (K.E)_{avg}$
- Combined Gas Law: $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$
-
Laws of Thermodynamics
Show/Hide Formulas
- Thermodynamic work (constant pressure): $W = P\Delta V$
- First Law of Thermodynamics: $\Delta Q = \Delta U + \Delta W$
- Efficiency of Carnot Engine: $\eta_c = \left(1-\frac{T_L}{T_H}\right) \times 100$
- Change in entropy: $\Delta S = \frac{\Delta Q}{T}$
-
Molar Specific Heats and Processes
Show/Hide Formulas
- Heat supplied at constant volume: $\Delta Q_v = n C_v \Delta T$
- Heat supplied at constant pressure: $\Delta Q_p = n C_p \Delta T$
- Mayer's relation: $C_p - C_v = R$
- Adiabatic index: $\gamma = \frac{C_p}{C_v}$
- Isothermal process equation: $PV=\text{constant}$
- Adiabatic process equation: $PV^\gamma=\text{constant}$
- Isochoric process relation: $\frac{P}{T}=\text{constant}$
- Isobaric process relation: $\frac{V}{T}=\text{constant}$
- Slope of Isothermal P-V curve: $\frac{\Delta P}{\Delta V} = -\frac{P}{V}$
- Slope of Adiabatic P-V curve: $\frac{\Delta P}{\Delta V} = -\gamma\frac{P}{V}$
- Isothermal Elasticity: $E=P$
- Adiabatic Elasticity: $E=\gamma P$
-
Chapter 12: Electrostatics
Show/Hide Details
-
Charge and Electric Field
Show/Hide Formulas
- Charge per unit area: $\Delta Q/\Delta A$
- Acceleration of charged particle in electric field: $a = qE/m$
- Elementary charge: $e = 1.602 \times 10^{-19}~C$
-
Coulomb's Law
Show/Hide Formulas
- Electrical Force: $F = k \frac{q_1 q_2}{r^2}$
- Coulomb's constant in vacuum: $k = 9 \times 10^9 N-m^2/C^2$
- Permittivity of free space relation: $k = 1/(4\pi\epsilon_0)$
- Permittivity of free space value: $\epsilon_0 = 8.85 \times 10^{-12} C^2/N-m^2$
- Action-reaction pair: $\vec{F}_{12} = -\vec{F}_{21}$
- Force in medium: $F' = (1/\epsilon_r)F$
- Force in medium: $F' = F/\epsilon_r$
- Relative Permittivity: $\epsilon_r = F/F'$
-
Electric Field Intensity
Show/Hide Formulas
- Definition: $E = \frac{F}{q_o}$
- Due to point charge: $E = k \frac{q}{r^2}$
- Due to infinite sheet: $E = \frac{\sigma}{2\epsilon_o}$
- Between parallel plates (vacuum): $E = \frac{\sigma}{\epsilon_o}$
- Between parallel plates (dielectric): $E = \frac{\sigma}{\epsilon_r \epsilon_o}$
- Between parallel plates (dielectric): $E = \frac{\sigma}{K \epsilon_o}$
-
Electric Flux and Gauss's Law
Show/Hide Formulas
- Definition (vector): $\Phi_E = \vec{E} \cdot \vec{A}$
- Definition (scalar): $\Phi_E = EA\cos\theta$
- Maximum flux: $\phi_{max} = EA$ (when $\theta = 0^{\circ}$)
- Minimum flux: $\phi_{min} = 0$ (when $\theta = 90^{\circ}$)
- Gauss's Law: $\Phi_E = \frac{Q_{enclosed}}{\epsilon_o}$
- Total flux: $\phi_{total} = (1/\epsilon_o)Q$
-
Electric Potential
Show/Hide Formulas
- Definition: $V = \frac{W}{q_o}$
- Due to point charge: $V = k \frac{q}{r}$
- Relation between E and V: $E = -\frac{\Delta V}{\Delta r}$
-
Capacitance
Show/Hide Formulas
- Definition: $C = \frac{Q}{V}$
- Parallel plate (vacuum): $C = \frac{\epsilon_o A}{d}$
- Parallel plate (dielectric): $C = \frac{\epsilon A}{d}$
- Parallel plate (dielectric): $C = \frac{K\epsilon_o A}{d}$
- Energy stored: $U = \frac{1}{2}QV$
- Energy stored: $U = \frac{1}{2}CV^2$
- Energy stored: $U = \frac{Q^2}{2C}$
- Series combination: $\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$
- Parallel combination: $C_{eq} = C_1 + C_2 + \dots$
- RC Time Constant: $\tau = RC$
-
Millikan's Oil Drop Experiment
Show/Hide Formulas
- Balanced forces: $qE = mg$
- Charge on oil drop: $q = \frac{mg}{E}$
-
Chapter 13: Current Electricity
Show/Hide Details
-
Current and Resistance
Show/Hide Formulas
- Current: $I = \frac{\Delta Q}{\Delta t}$
- Ohm's Law: $V = IR$
- Resistance: $R = \rho \frac{L}{A}$
-
Resistor Combinations
Show/Hide Formulas
- Series: $R_{eq} = R_1 + R_2 + \dots$
- Parallel: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$
-
Power Dissipation
Show/Hide Formulas
- Power: $P = VI$
- Power: $P = I^2R$
- Power: $P = \frac{V^2}{R}$
-
Kirchhoff's Rules
Show/Hide Formulas
- First Rule (Junction Rule): $\sum I = 0$
- Second Rule (Loop Rule): $\sum V = 0$
-
Wheatstone Bridge and Potentiometer
Show/Hide Formulas
- Wheatstone Bridge (balance condition): $\frac{R_1}{R_2} = \frac{R_3}{R_4}$
- Potentiometer (voltage measurement): $V = kL$
-
Chapter 14: Electromagnetism
Show/Hide Details
-
Magnetic Force
Show/Hide Formulas
- On current-carrying conductor (vector): $\vec{F} = I (\vec{L} \times \vec{B})$
- On current-carrying conductor (magnitude): $F = ILB \sin\theta$
- On moving charge (Lorentz Force, vector): $\vec{F} = q (\vec{v} \times \vec{B})$
- On moving charge (Lorentz Force, magnitude): $F = qvB \sin\theta$
-
Motion of Charge in Magnetic Field
Show/Hide Formulas
- Radius of circular path: $r = \frac{mv}{qB}$
- Frequency of revolution (cyclotron): $f = \frac{qB}{2\pi m}$
-
Magnetic Field and Ampere's Law
Show/Hide Formulas
- Magnetic Flux (vector): $\Phi_B = \vec{B} \cdot \vec{A}$
- Magnetic Flux (scalar): $\Phi_B = BA \cos\theta$
- Ampere's Law: $\oint \vec{B} \cdot d\vec{l} = \mu_o I_{enclosed}$
- Magnetic field (long straight wire): $B = \frac{\mu_o I}{2\pi r}$
- Magnetic field (inside solenoid): $B = \mu_o n I$
- Magnetic field (inside toroid): $B = \frac{\mu_o N I}{2\pi r}$
- Force per unit length (parallel wires): $\frac{F}{L} = \frac{\mu_o I_1 I_2}{2\pi d}$
-
Torque on Current Loop and Galvanometer
Show/Hide Formulas
- Torque on current loop (vector): $\vec{\tau} = \vec{\mu} \times \vec{B}$
- Torque on current loop (magnitude): $\tau = NIAB \sin\alpha$
- Magnetic dipole moment: $\vec{\mu} = NI\vec{A}$
- Shunt resistance (ammeter): $R_s = \frac{I_g R_g}{I - I_g}$
- Multiplier resistance (voltmeter): $R_m = \frac{V}{I_g} - R_g$
-
Chapter 15: Electromagnetic Induction
Show/Hide Details
-
Magnetic Flux and Faraday's Law
Show/Hide Formulas
- Magnetic Flux (vector): $\Phi_B = \vec{B} \cdot \vec{A}$
- Magnetic Flux (scalar): $\Phi_B = BA \cos\theta$
- Faraday's Law of Induction: $\mathcal{E} = -N \frac{\Delta\Phi_B}{\Delta t}$
- Motional EMF: $\mathcal{E} = vBL \sin\theta$
-
Inductance
Show/Hide Formulas
- Self-induced EMF: $\mathcal{E}_L = -L \frac{\Delta I}{\Delta t}$
- Self-inductance (solenoid): $L = \frac{\mu_o N^2 A}{l}$
- Energy stored in inductor: $U = \frac{1}{2}LI^2$
- Mutually induced EMF: $\mathcal{E}_s = -M \frac{\Delta I_p}{\Delta t}$
- Mutual inductance (coaxial solenoids): $M = \frac{\mu_o N_p N_s A}{l}$
-
AC Generators and Transformers
Show/Hide Formulas
- AC Generator EMF: $\mathcal{E} = N A B \omega \sin(\omega t)$
- Maximum AC Generator EMF: $\mathcal{E}_{max} = N A B \omega$
- Transformer voltage ratio: $\frac{V_s}{V_p} = \frac{N_s}{N_p}$
- Transformer current ratio: $\frac{N_s}{N_p} = \frac{I_p}{I_s}$
- Transformer efficiency: $\eta = \frac{\text{Output Power}}{\text{Input Power}} \times 100\%$
- Transformer efficiency (power): $\eta = \frac{V_s I_s}{V_p I_p} \times 100\%$
-
Chapter 16: Alternating Current
Show/Hide Details
-
AC Quantities
Show/Hide Formulas
- Instantaneous AC current: $I = I_o \sin(\omega t + \phi)$
- Instantaneous AC voltage: $V = V_o \sin(\omega t + \phi)$
- RMS current: $I_{rms} = \frac{I_o}{\sqrt{2}}$
- RMS voltage: $V_{rms} = \frac{V_o}{\sqrt{2}}$
-
Reactance and Impedance
Show/Hide Formulas
- Ohm's Law for Resistor: $V_R = I_R R$
- Inductive Reactance: $X_L = \omega L = 2\pi f L$
- Ohm's Law for Inductor: $V_L = I_L X_L$
- Capacitive Reactance: $X_C = \frac{1}{\omega C} = \frac{1}{2\pi f C}$
- Ohm's Law for Capacitor: $V_C = I_C X_C$
- Impedance (RC series): $Z = \sqrt{R^2 + X_C^2}$
- Phase angle (RC series): $\tan\phi = \frac{X_C}{R}$
- Impedance (RL series): $Z = \sqrt{R^2 + X_L^2}$
- Phase angle (RL series): $\tan\phi = \frac{X_L}{R}$
- Impedance (RLC series): $Z = \sqrt{R^2 + (X_L - X_C)^2}$
- Phase angle (RLC series): $\tan\phi = \frac{X_L - X_C}{R}$
-
Resonance and Power
Show/Hide Formulas
- Resonant frequency (RLC series): $f_r = \frac{1}{2\pi\sqrt{LC}}$
- Quality Factor (Q-factor): $Q = \frac{\omega_r L}{R}$
- Quality Factor (Q-factor): $Q = \frac{1}{\omega_r C R}$
- Quality Factor (Q-factor): $Q = \frac{1}{R}\sqrt{\frac{L}{C}}$
- Power (Resistor): $P = I_{rms}^2 R$
- Power (Resistor): $P = V_{rms} I_{rms}$
- Average Power (AC): $P_{avg} = V_{rms} I_{rms} \cos\phi$
- Power Factor: $\cos\phi = \frac{R}{Z}$
- Wattless Current: $I_w = I_{rms} \sin\phi$
-
Chapter 17: Physics of Solids
Show/Hide Details
-
Stress and Strain
Show/Hide Formulas
- Stress: $\sigma = \frac{F}{A}$
- Longitudinal Strain: $\epsilon_L = \frac{\Delta L}{L_o}$
- Volumetric Strain: $\epsilon_V = \frac{\Delta V}{V_o}$
- Shear Strain: $\epsilon_S = \tan\theta$
- Shear Strain (approximate): $\epsilon_S \approx \theta$
-
Moduli of Elasticity
Show/Hide Formulas
- Hooke's Law: $\sigma = Y \epsilon$
- Young's Modulus (definition): $Y = \frac{\text{Tensile Stress}}{\text{Longitudinal Strain}}$
- Young's Modulus (formula): $Y = \frac{F/A}{\Delta L/L_o}$
- Young's Modulus (simplified): $Y = \frac{FL_o}{A\Delta L}$
- Bulk Modulus (definition): $B = \frac{\text{Volumetric Stress}}{\text{Volumetric Strain}}$
- Bulk Modulus (formula): $B = \frac{-\Delta P}{\Delta V/V_o}$
- Compressibility: $K = 1/B$
- Shear Modulus (definition): $G = \frac{\text{Shear Stress}}{\text{Shear Strain}}$
- Shear Modulus (formula): $G = \frac{F/A}{\theta}$
-
Chapter 18: Electronics
Show/Hide Details
-
Transistors and Amplifiers
Show/Hide Formulas
- Current gain ($\beta$ for common emitter): $\beta = \frac{\Delta I_C}{\Delta I_B}$
- Voltage gain (transistor): $A_V = \beta \frac{R_C}{R_{in}}$
- Inverting Amplifier Gain: $A_V = -\frac{R_f}{R_{in}}$
- Non-Inverting Amplifier Gain: $A_V = 1 + \frac{R_f}{R_{in}}$
- Adder/Summing Amplifier Output: $V_{out} = -R_f \left( \frac{V_1}{R_1} + \frac{V_2}{R_2} + \dots \right)$
-
Logic Gates (Boolean Algebra)
Show/Hide Formulas
- AND Gate: $Y = A \cdot B$
- OR Gate: $Y = A + B$
- NOT Gate: $Y = \bar{A}$
- NAND Gate: $Y = \overline{A \cdot B}$
- NOR Gate: $Y = \overline{A + B}$
- XOR Gate: $Y = A \oplus B$
- XOR Gate: $Y = A\bar{B} + \bar{A}B$
- XNOR Gate: $Y = \overline{A \oplus B}$
- XNOR Gate: $Y = A B + \bar{A}\bar{B}$
-
Chapter 19: Dawn of Modern Physics
Show/Hide Details
-
Relativity
Show/Hide Formulas
- Mass-Energy relation: $E=mc^2$
- Relativistic Mass: $m=\frac{m_o}{\sqrt{1-\frac{v^2}{c^2}}}$
- Lorentz Contraction (Length): $l=l_o\sqrt{1-\frac{v^2}{c^2}}$
- Time Dilation: $t=\frac{t_o}{\sqrt{1-\frac{v^2}{c^2}}}$
-
Black Body Radiation
Show/Hide Formulas
- Wien's Displacement Law: $\lambda_{max} T = 2.9 \times 10^{-3}~m K$
- Stefan-Boltzmann Law: $E = \sigma T^4$
-
Photoelectric Effect
Show/Hide Formulas
- Photon energy: $E=hf$
- Photon energy: $E=\frac{hc}{\lambda}$
- Photon momentum: $p=\frac{h}{\lambda}$
- Photon momentum: $p=mc$
- Photon momentum: $p=\frac{hf}{c}$
- Einstein's Photoelectric Equation: $K.E_{max} = hf - \phi_o$
- Einstein's Photoelectric Equation: $K.E_{max} = hf - hf_o$
- Einstein's Photoelectric Equation: $K.E_{max} = h(f-f_o)$
- Stopping potential relation: $eV_o = K.E_{max}$
- Stopping potential relation: $eV_o = \frac{1}{2}mv_{max}^2$
- Work function: $\phi_o = hf_o$
- Work function: $\phi_o = \frac{hc}{\lambda_o}$
-
Compton Effect
Show/Hide Formulas
- Compton shift: $\Delta\lambda = \lambda_f - \lambda_i$
- Compton shift: $\Delta\lambda = \frac{h}{m_o c}(1-\cos\theta)$
- Compton wavelength: $\frac{h}{m_o c} = 2.43 \times 10^{-12}~m$
-
Pair Production and Annihilation
Show/Hide Formulas
- Pair production energy: $hf = 2m_o c^2 + K.E_{e^-} + K.E_{e^+}$
- Rest mass energy of electron/positron: $m_o c^2 = 0.51~MeV$
-
De-Broglie Wavelength and Uncertainty Principle
Show/Hide Formulas
- De-Broglie wavelength: $\lambda = \frac{h}{mv}$
- De-Broglie wavelength: $\lambda = \frac{h}{p}$
- Davisson and Germer wavelength: $\lambda = \frac{h}{\sqrt{2mVe}}$
- Heisenberg's Uncertainty Principle (Position-Momentum): $\Delta p \cdot \Delta x \approx h$
- Heisenberg's Uncertainty Principle (Energy-Time): $\Delta E \cdot \Delta t \approx h$
-
Chapter 20: Atomic Spectra
Show/Hide Details
-
Hydrogen Spectrum
Show/Hide Formulas
- General formula: $\frac{1}{\lambda} = R \left(\frac{1}{p^2} - \frac{1}{n^2}\right)$
- Rydberg's constant: $R = 1.0974 \times 10^7~m^{-1}$
- Lyman Series ($n=2$ longest wavelength): $\lambda = \frac{4}{3R} = 1216~\text{Å}$
- Lyman Series ($n=\infty$ shortest wavelength): $\lambda = \frac{1}{R} = 912~\text{Å}$
- Balmer Series ($n=3$ longest wavelength): $\lambda = \frac{36}{5R} = 6563~\text{Å}$
- Balmer Series ($n=\infty$ shortest wavelength): $\lambda = \frac{4}{R} = 3648~\text{Å}$
- Paschen Series ($n=4$ longest wavelength): $\lambda = \frac{144}{7R} = 18761.1~\text{Å}$
- Paschen Series ($n=\infty$ shortest wavelength): $\lambda = \frac{9}{R} = 8208~\text{Å}$
- Bracket Series ($n=5$ longest wavelength): $\lambda = \frac{400}{9R} = 40533.3~\text{Å}$
- Bracket Series ($n=\infty$ shortest wavelength): $\lambda = \frac{16}{R} = 14592~\text{Å}$
- Pfund Series ($n=6$ longest wavelength): $\lambda = \frac{900}{11R} = 74618.18~\text{Å}$
- Pfund Series ($n=\infty$ shortest wavelength): $\lambda = \frac{25}{R} = 22800~\text{Å}$
-
Bohr's Model
Show/Hide Formulas
- Angular momentum quantization: $mvr_n = \frac{nh}{2\pi}$
- Radius of $n^{th}$ orbit: $r_n = \frac{n^2 h^2}{4\pi^2 m e^2 k}$
- Radius of $n^{th}$ orbit: $r_n = r_o n^2$
- Bohr's Radius ($n=1$): $r_o = 0.53~\text{Å}$
- Energy of electron in $n^{th}$ orbit: $E_n = KE + PE$
- Energy of electron in $n^{th}$ orbit: $E_n = -\frac{ke^2}{2r_n}$
- Energy of electron in $n^{th}$ orbit: $E_n = -\frac{E_o}{n^2}$
- Ground state energy: $E_o = \frac{2\pi^2 m k^2 e^4}{h^2}$
- Ground state energy: $E_o = 13.6~eV$
- Energy transition: $\Delta E = E_p - E_q$
- Energy transition: $\Delta E = hf$
-
X-Rays
Show/Hide Formulas
- Characteristic X-ray energy ($K_\alpha$): $hf_{K\alpha} = E_L - E_K$
- Characteristic X-ray energy ($M_\alpha$): $hf_{M\alpha} = E_M - E_K$
- Continuous X-ray maximum frequency: $V_e = hf_{max}$
-
Chapter 21: Nuclear Physics
Show/Hide Details
-
Nuclear Composition and Properties
Show/Hide Formulas
- Number of neutrons: $N = A - Z$
- Mass of electron: $0.00055~\text{a.m.u}$
- Mass of proton: $1.007276~\text{a.m.u}$
- Mass of neutron: $1.008665~\text{a.m.u}$
- Mass of deuteron: $2.014102~\text{a.m.u}$
- Mass of helium nucleus: $4.002603~\text{a.m.u}$
- Atomic mass unit to MeV: $1~\text{a.m.u} = 931~MeV$
- Mass defect: $\Delta m = \sum \text{masses of nucleons} - \text{mass of nucleus}$
- Mass defect for deuterium: $\Delta m = 0.002388~\text{a.m.u}$
- Binding Energy: $E = \Delta m \times 931~MeV$
- Binding Energy (expanded): $E = [Z m_p + (A-Z)m_n - m_{nucleus}] \times 931~MeV$
- Binding Energy for deuterium: $2.24~MeV$
-
Nuclear Forces
Show/Hide Formulas
- Coulomb's repulsive force: $F_c = k \frac{e^2}{r^2}$
- Newton's attraction force: $F_g = G \frac{m^2}{r^2}$
-
Radioactive Decay
Show/Hide Formulas
- $\alpha$-decay: $^A_Z X \to ^{A-4}_{Z-2} Y + ^4_2He$
- $\beta^-$-decay: $^A_Z X \to ^A_{Z+1} Y + ^0_{-1}e + \bar{\nu}$
- $\beta^+$-decay: $^A_Z X \to ^A_{Z-1} Y + ^0_{+1}e + \nu$
- $\gamma$-decay: $^A_Z X^* \to ^A_Z X + \gamma$
- Radioactive decay law: $\Delta N/\Delta t = -\lambda N$
- Radioactive decay (activity): $N_t = N_o e^{-\lambda t}$
- Half-life: $T_{1/2} = 0.693/\lambda$
- Mean life: $T = 1/\lambda$
-
Radiation Exposure and Units
Show/Hide Formulas
- Absorbed Dose: $D = \frac{E}{m}$
- Equivalent Dose: $H = D \times \text{RBE}$
- Becquerel (unit of activity): $1~Bq = 1~\text{disintegration per second}$
- Curie (unit of activity): $1~Ci = 3.7 \times 10^{10}~Bq$
-
Nuclear Fission and Fusion
Show/Hide Formulas
- D-D Reaction: $^2_1H + ^2_1H \to ^3_2He + ^1_0n + 3.3~MeV$
- D-T Reaction: $^2_1H + ^3_1H \to ^4_2He + ^1_0n + 17.6~MeV$
- Energy from 1 atom of U-235: $200~MeV$
- Energy from 1 kg of U-235: $5.12 \times 10^{26}~MeV$
- Time for one fission: $\sim 10^{-8}~s$
- Time for 60 fissions: $\sim 0.6~\mu s$
- Efficiency of petrol engine: $\eta \approx 25\% \text{ to } 30\%$
- Efficiency of diesel engine: $\eta \approx 35\% \text{ to } 40\%$
-
Mass Spectrograph
Show/Hide Formulas
- Radius of path: $r = \frac{\sqrt{2Vm}}{B^2e}$